Animal microRNA Target Prediction Using Diverse Sequence-Specific determinants
نویسندگان
چکیده
Many recent studies have shown that access of animal microRNAs (miRNAs) to their complementary sites in target mRNAs is determined by several sequence-specific determinants beyond the seed regions in the 5′ end of miRNAs. These factors have been related to the repressive power of miRNAs and used in some programs to predict the efficacy of miRNA complementary sites. However, these factors have not been systematically examined regarding their capacities for improving miRNA target prediction. We develop a new miRNA target prediction algorithm, called Hitsensor, by incorporating many sequence-specific features that determine complementarities between miRNAs and their targets, in addition to the canonical seed regions in the 5′ ends of miRNAs. We evaluate the performance of our algorithm on 720 known animal miRNA:target pairs in four species, Homo sapiens, Mus musculus, Drosophila melanogaster and Caenorhabditis elegans. Our experimental results show that Hitsensor outperforms five popular existing algorithms, indicating that our unique scheme for quantifying the determinants of complementary sites is effective in improving the performance of a miRNA target prediction algorithm. We also examine the effectiveness of miRNA-mediated repression for the predicted targets by using a published quantitative protein expression dataset of miR-223 knockout in mouse neutrophils. Hitsensor identifies more targets than the existing algorithms, and the predicted targets of Hitsensor show comparable protein level changes to those of the existing algorithms.
منابع مشابه
Animal microRNA Target Prediction By Incorporating Diverse Sequence-Specific Determinants
More recent evidence has shown that access of animal microRNAs (miRNAs) to their complementary sites in target mRNAs is determined by more sequence-specific determinants than the seed regions in the 5' end of miRNAs. Although these factors have been shown to be related to the repressive power of miRNAs and used, in separate programs, to predict the efficacy of miRNA complementary sites, it rema...
متن کاملComparing MicroRNA Target Gene Predictions Related to Alzheimer's Disease Using Online Bioinformatics Tools
Introduction: The prediction of microRNAs related to target genes using bioinformatics tools saves time and costs of the experimental analyses. In the present study, the prediction of microRNA target genes relevant to Alzheimer’s Diseases (AD) were compared with the experimentally reported data using different bioinformatics tools. Method: A total of 41 microRNAs associated with 21 essential ge...
متن کاملComparing MicroRNA Target Gene Predictions Related to Alzheimer's Disease Using Online Bioinformatics Tools
Introduction: The prediction of microRNAs related to target genes using bioinformatics tools saves time and costs of the experimental analyses. In the present study, the prediction of microRNA target genes relevant to Alzheimer’s Diseases (AD) were compared with the experimentally reported data using different bioinformatics tools. Method: A total of 41 microRNAs associated with 21 essential ge...
متن کاملComputational Identification of Micro RNAs and Their Transcript Target(s) in Field Mustard (Brassica rapa L.)
Background: Micro RNAs (miRNAs) are a pivotal part of non-protein-coding endogenous small RNA molecules that regulate the genes involved in plant growth and development, and respond to biotic and abiotic environmental stresses posttranscriptionally.Objective: In the present study, we report the results of a systemic search for identifi cation of new miRNAs in B. rapa using homology-based ...
متن کاملNAViGaTing the Micronome – Using Multiple MicroRNA Prediction Databases to Identify Signalling Pathway-Associated MicroRNAs
BACKGROUND MicroRNAs are a class of small RNAs known to regulate gene expression at the transcript level, the protein level, or both. Since microRNA binding is sequence-based but possibly structure-specific, work in this area has resulted in multiple databases storing predicted microRNA:target relationships computed using diverse algorithms. We integrate prediction databases, compare prediction...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Bioinformatics and Computational Biology
دوره 8 شماره
صفحات -
تاریخ انتشار 2010